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Random Convection under Conditions of

Weightlessness

B. GeBHART*
Cornell University, Ithaca, N. Y.

The nature of the transport process between a fluid and its enclosing surface is considered in
the presence of random disturbances and, in particular, for conditions likely to prevail in
space devices. The argument is developed that disturbances normally present in the mo-
tion of such devices may result in relatively effective transport mechanisms. On the basis of
assumptions regarding the nature of the disturbances and their mode of occurrence, a number
of circumstances are analyzed. The resulting transport rates generally are much greater than
would be calculated for the process that would be expected in the absence of all disturbances.

Nomenclature

specific heat

a7e/s?, the disturbance Fourier number

ar/x? or ar/r?, Fourier number

surface (or convection) coefficient

latent heat of vaporization

thermal conductivity

mass rate of condensation/unit area

positive integer in the probability distribution

hs/k, Nusselt number, where %k is the thermal conduec-
tivity of the fluid

rate of heat transfer/unit area

amount of heat transferred

amount of heat transferred /unit area

significant dimension

temperature

F/F.,

thickness of a condensate film

thermal diffusivity

temperature excess (I — {«)

fluid density

time
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Subscripts

based upon the time interval between disturbances
mean or most probable value
at the fluid-solid interface
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Introduection

ANY space devices contain enclosures filled with a gas,

vapor, or liquid (or a mixture of phases), e.g., condenser-
radiators, heat exchangers, vapor generators, and conditioned
spaces. In the presence of gravity, the inevitable density dif-
ferences that arise in mass or thermal transfer processes result
in relative fluid motion that enhances transfer.

However, in free motion in space, the body force is zero.
Therefore, natural convection effects are nominally absent.
Under this condition the proper theory for the various types
of transport processes, in the absence of forced flow, is the
appropriate conduction theory. This type of analysis pre-
dicts very low transfer rates in many important processes,
e.g., in boiling or condensation where the vapor or liquid
blankets the surface, or in cooling a long cylinder immersed in
a fluid of relatively large extent from which no heat could be
transferred in steady state with a finite temperature dif-
ference. Such results are obtained from conduction analysis
for many circumstances and are very unfortunate because of
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the rigid criteria necessary in the design of devices for space.
The purpose of this paper is to suggest practical considerations
that imply “random’ convection processes in space devices
and to show the effect that such processes would have upon
transport rates.

Space devices of any size and complexity have associated
with their operation many processes and events that supply
appreciable impulses to the device while in free motion. Such
impulses arise from internal mechanical events, particle im-
pacts, attitude control measures, motion of occupants, ete.
Even when subject to the relatively small acceleration of an
electrie propulsion system, these effects, as well as those due to
uneven thrust from the propulsion system, may be significant.
The net effect of such disturbances on the motion of a device
whose attitude is controlled will be successive small fluctuations
about an instantaneous mean velocity and orientation in
space.

Consider, for example, a single phase fluid in an enclosure
subject to these disturbances. The effect of the fluctuations
will be transferred to the fluid by normal and shear stresses.
The fluctuations in velocity principally cause normal stresses
that will result in little relative motion between the fluid and
the enclosure walls if the fluctuations are relatively slow com-
pared to the time necessary for the propagation of pressure
disturbances. However, the fluid is affected by changing
orientation primarily by shear stresses, which are relatively
small and act only during the period of relative motion. There-
fore, the fluid maintains essentially the same orientation in
space, whereas the enclosure fluctuates in orientation. The
result of these considerations is that it is perhaps reasonable
to assume that there is an important design application in
which there is relative motion between bounding surfaces and
enclosed fluids and that these motions may be idealized as a
sequence of abrupt relative displacements spaced by time in-
tervals 7.. Various objects in such an enclosure, but attached
to it, also would experience a displacement with respect to the
fluid with which they are in contact.

The foregoing idealizations provide a basis for theories of
transport processes in various circumstances. Assumptions
must be made concerning the time interval 7. because, to the
present writer’s knowledge, no measurements have been made
in space concerning either the magnitude of these disturbances
or their spacing in time. The magnitude of the relative mo-
tion is not important as long as it is at least the same order of
size as the transfer element of interest. However, 7, has an
important effect.

Considering the more complex among various proposed
space devices, it is perhaps reasonable to postulate that there
will be many unconnected causes of such disturbances and
that, therefore, 7. is a randomly distributed variable with a
probability distribution f(r.). The form of f(r.) and the most
probable value of the time interval 7,, will depend upon the
nature of the effects that produce the disturbances and upon
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their number. For the kinds of transport processes analyzed
to date, it appears that 7, is the principal variable; various
reasonable choices of f(.) produce similar results.

Analysis

In order to assess the effect of disturbances upon transport
processes, a number of cases have been analyzed. The first
to be discussed is heat transfer to a single-phase fluid. The
relative motion, between the bounding solid and the fluid, is
assumed to amount to an instantaneous relative displacement
that is followed after time interval 7. by another displace-
ment. The transfer process may be approximated as pure
conduction in the fluid and is a transient of duration =, be-
ginning with a fluid uniformly at - with the bounding surface
instantaneously raised to &.7 This is a reasonable model for
cases in which the time interval to achieve the displacement
1s small compared to 7. and in which the relative displacement
is at least as large as the heat transfer surface. These condi-
tions minimize the convection effect associated with relative
motion between a fluid and a bounding surface.

If the amount of heat transferred per unit of surface area in
time 7. is Q”, the average rate of heat transfer will be

@ = j; Q;cf(n)dn (1)

This is written in terms of a “disturbance” Fourier number,
F = ar./s?, where s is some significant dimension and f(F) is
the probability distribution of F:
a r~° QfF)
af e @

The Nusselt number, based upon the average surface co-
efficient, is

o s _ @ s _ Qo
M= = =tk skt%f ar

or

Vi O [0, -

Nu = SoF.

where y = F/F,, and F,, is the mean or most probable value
of F as indicated in the subsequent discussion of the various
probability distributions. The probability distribution is
f), and @” is to be expressed in terms of y.

A number of probability distributions appear reasonable.
The exponential distribution might be used.

f(F) = Ce=F = (1/F,)e~ " (4a)
or

fy) = e (4b)

where y = F/F,, and F,, is the mean value of F, that is, F.

Since the function f(y) in Eq. (8) is to be the resultant
probability distribution of a number of more or less inde-
pendent effects, it is perhaps more reasonable to use the
following form of the gamma distribution:

fF/F) = k,(F/F,)"e T (5)

where n is a positive integer and F,, is chosen as the most
probable value in this case. This is the probability distribu-
tion of the sum of n 4+ 1 independent variables, each ex-
ponentially distributed. This distribution approaches the
Gaussian as n increases, and as n — o the probability goes to

T This case corresponds to a solid element of relatively large
thermal capacity, and one solves for the average eonvection co-
efficient %. There is an opposite case, of small element thermal
capacity, in which a thermal flux is assigned at the surface, and
the time average value of ¢, is found.
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Fig. 1 Conduction
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a) PLANE CONDUCTION REGION
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b ) CYLINDRICAL OR SPHERICAL
REGIONS

7
/

1.0aty = 1.} Thatis, for n— o, all time intervals between
disturbances are the same and 7. = 7,. In general, the most
probable and mean values of F are related as follows:

F, = [n/(n+ DIF (6)

The constant in Eq. (5) is determined by applying the condi-
tion that the total probability is 1.0. The equation, written
in terms of y = F/F,,, is therefore

) = @ /nhy"e @)

The subsequent analysis shows that the effect of n on the pre-
dicted heat transfer parameters is small.

The first cases considered are the one-dimensional geome-
tries: the isothermal flat surface, long cylinder, and sphere in
extensive bodies of single-phase fluid. Coordinate systems
are shown in Fig. 1. The process in the fluid after a dis-
turbance is a pure conduction transient. The equation and
boundary conditions for the plane conduction region are

920/0x% = (1/0)(08/01) 8

forr =0,8 =0andforr>0atz =0,8 = 6. The solu-
tion is (see, e.g., Carslaw and Jaeger?)
p z 9 a/2en/?
0—0=el‘f02(TT)172=1—7rT/20 e~ de (9)
The instantaneous flux at z = O is
Q" = —k(06/0x)o = kby/(mar)l/? = kfy/s(wF)1/?
The value of @”, from r = 0 to 7 = 7., is found:
_ kb fredr _ 2sk6 oy
f 0" (7ra)”°j:, iz T g(m)ti P =
/
2ot (EL”)l "y (10)
o ki

where the F,, introduced into Eq. (10) may be either the mean
or the most probable value of F.
The statement for the spherical conduection region is

(0260/0r%y + (2/r)(08/0r) = (1/a)(d6/07)

forr = 0,0 = Oandfor7 > 0atr = s, § = 6. This problem
may be reduced to that for a plane conduction region by the
following change of variables: ¢ = rfandr’ = r — 5. The
result is

o%p/or'* = (1/a)(d¢/d7) (11)

t For a discussion of various distributions see, e.g., Parzen.!
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forr =0, ¢ =0andforr>0atr =0, ¢ = ¢ = sbs.
Therefore, from Eq. (9),

) rf 7’ s
T erfe ' = erfe
b s 2an) 2( 7)1/2

or

s 9 ple—o/2an]
0=90~<1—T/2 e dz
7 x

The instantaneous flux at 7 = s and the value of @” are

_ Kby 1
S < +—1/EFT/2>

2skby | yF F\12
o - BRT (T) ]

This is seen to be the plane conduction region solution, Eq.
(10), plus a correction term (yF../2) for curvature.

The statement of the transient problem in a cylindrical
region is

(0%8/0r?) 4 (1/r)(08/0r) = (1/a)(08/07)

forr =0,0 =0andforr>0atr =s, 6 = 8. Thesolution
of this problem may be obtained in the form of an integral
involving Bessel functions. A number of numerical estimates
of the solution have been made. Of interest here are those
concerning heat transfer rates at r = s. Jaeger?® presented
series for ¢” in terms of F for small and for large values of F.
Jaeger and Clarke! tabulated values of ¢,”. Goldenberg® in-
tegrated the series of Jaeger and presented a plot of @” vs F.
Jakob® tabulated a numerical evaluation of ¢” and Q" by
Perry and Berggren.

None of these results are in a convenient form for the
present purposes since the @” function must be integrated in
Eq. (3). The data tabulated by Jakob (for F < 3.5) may be
fitted approximately by an equation of the following form:

Q" = skdo ’: ) + 2 (F)llz] (14)

The values of b and ¢ is 0.95 and 0.4, respectively. However,
as is shown later, the present analysis is of interest mainly for
relatively small values of F. Therefore, the simpler suggestion
of Jaeger?® will be followed, that is, that the value of ¢,” for the
cylindrical region be taken equal to the mean of the plane and
spherical region values. This leads to the following expression
for Q”:

QII — 28k00 [_F: + <_F_1>1/2] = M’ [g&" _|_ <ﬂ“>1/2 yl/Z]
a 4 s @ 4 T

(15)

(12)

This relation is compared with the results of Perry and
Berggren in Fig. 2. It is to be noted that Eq. (15) is not
accurate for large F and that it results in the wrong value for
the asymptotic heat transfer rate.

The variations of @” with F for the three geometries are
shown in Fig. 2. The effects of curvature in increasing the
heat transfer are clearly seen.

The average Nusselt numbers are to be calculated from Eq.
(3) with the probability distribution, Eq. (7). For the plane
conduction region, Eq. (10) yields

2 1

Nu, = —+
" iz lelz

n+1
L f Yy WD gy = Fouz (16a)

or

En = Cn (PC]C/Tm)”2 (16b)
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Fig. 2 Heat transfer during a transient

where
_a2n — D@ —3) ... 31
" n! 2n—1

17
Values of C, for various values of n are given in Table 1.

Table 1 n-dependent constant

n 1 2 3 oo}
Chr 1 1.061 1.083 1.128

Equation (16b) indicates that A is dependent simply upon the
square root of the reciprocal of the most probable time in-
terval. The tabulated values of C, indicate that the variation
of n over its whole conceivable range causes only a 139, change
in the heat transfer prediction. The use of the simple ex-
ponential probability distribution, Eq. (4b), yields the same
form of result, i.e., Eq. (16a). However, the constant C, is
2.0, and F,, is to be interpreted as the mean value of F.

The result for the spherical region is obtained from Fq.
(13):

— nrtl ro (1 2 1 1
Nun =7 fo (zh":v'y—)ydy

1 nn+1 © ;
= —_ —=(1/2) p—
=1+ 1/2F 12 1 fn v ey

1+

F 1/2 (18) ;
where (', is again the constant of Eq. (17). That is, the result
is merely that for the plane region plus 1.

For the cylindrical region the approximate relation, Eq.
(15), is used:

— gl e (12 11 ~
Va =", <z+rF y_) ey

or
Nu, = § 4 (Co/Fa'l?) (19)

This is the same as Eq. (18), for the spherical case, except
that a 1 appears. The inapplicability of the approximation,
Eq. (15), for large F may be seen from Eq. (19). The correct
asymptotic value of Nu for a long cylinder is zero.

The effects of the random disturbances upon the heat
transfer rate may be seen by comparing Eqgs. (16, 18, and 19)
with the steady-state results. These latter are the limit as
F, — . For the plane and cylindrical regions, the limit of

Nu becomes zero, and for the spherical region Nu — 1, the

§ The importance of random distiirbances may be appreciated
by comparing the value of Cy/(F#)¥? with 1.0 (the pure conduc-
tion effect). For air at § atm, s = } ft, and 7n = 30 see, the
value of Crn/(Fum)'/?is 4.



FEBRUARY 1963

STEADY STATE

VALUES

Fig. 3 Effect of disturbances on heat transfer

well-known pure conduction solution. Random convection
and pure conduction are compared in Fig. 3, and the dif-
ferences are seen to be substantial, increasing rapidly with a
decreasing time interval between disturbances.

The other transport process to be considered is the filmwise
condensation of a saturated vapor at f, on a surface main-
tained at &. It is assumed that there is no liquid motion in-
duced by vapor velocity. The assumption is made that the
random disturbances, spaced at time interval r,, completely
clear the surface of an otherwise stagnant liquid film. A new
film forms, and its instantaneous thickness is ¥. Assuming
that ¥ remains small compared to the radius of curvature of
the solid surface, all geometries may be considered to be a
flat surface, shown in Fig. 4. The instantaneous rate of mass
addition to the liquid film per unit area is m”.

Employing the original assumption of Nusselt (justified by
Sparrow and Gregg? for small ¢,(fy — t.)/hys, for gravity
drained films) that the conduction process through the liquid
film may be treated as steady-state conduction through a
slab, one may write the thermal flux as

9" = k/Y)t — to) = (k/Y)b0 = m"hy, 20

where hj, is the latent heat of vaporization. The time rate of
change of Y is related to m” as follows:

p(dY/dr) = m” 1)
Combining Egs. (20) and (21), one has
YdY = (k0o/phy)dr
This is integrated from » = 0 to 7 = 7, and Q" is found:
Y2 = (2k6o/ phys)7.
Q" = hsopY. = (20kh p,f07.)*"?

208%kh ;g0 F .\
= (p_f”___ y) (22)
a
where F,. and y are defined as before. The average Nusselt
number is found from Eq. (3) for the probability distribution
of Eq. (7):

J— thﬂ 1/2 patl ©
N —_ f n—(1/2) —nyd
“ <cp00Fm> n! yr e mey

R 7rhf,, 1/2 C.
Nu = (ﬂ) Fm1/2 (23)

where C, is defined in Eq. (17) and is listed in Table 1.
The dependence appearing in Eq. (23) is similar to that in
the previous cases presented. However, the dimensionless

or

U All properties appearing in this equation are for the liquid
phase.
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Fig. 4 Filmwise condensa-
tion

LIQUID

parameter why,/cy0, is very large for many condensation con-
ditions of practical importance. For example, for mercury
vapor at 300°C, condensing on a surface at 270°C, the value
is 225. In such a circumstance Eq. (23) predicts a high value
for the heat transfer rate. Note that the rate in the absence
of disturbances approaches zero.

b <~

Conclusion

The results for the cases analyzed indicate that random im-
pulses would have a large effect on transport rates in circum-
stances where forced fluid motion is not assured. Although
only simple heat conduction and vapor condensation processes
were treated specifically, the same considerations would apply
for many other types of transport processes. In particular,
the conduction solutions presented apply to mass diffusion
processes that might arise, for example, in transpiration cool-
ing or in metabolic respiration. If the mole fraction of the
diffusing chemical species is small, the same solutions are
applicable if the thermal diffusivity in the Fourier number is
replaced by the chemical diffusivity.

The effects of disturbances are shown to be very large in a
condensation process. Boiling might be analyzed similarly.
The result of condensation suggests that it might be more de-
sirable intentionally to introduce closely spaced disturbances
into a condenser rather than to arrange for the drainage of
extensive condensate films by, for example, controlling the
motion of the vapor. The arrangement of surface un-
doubtedly would be different in that case.

The principal assumptions that support the point of view
and methods of analysis of this paper are that there are con-
tinuing disturbances that are appreciable compared to any
steady “body” forces present and that these disturbances
cause relative displacements that are the order of size of the
various transfer surfaces of interest. Detailed consideration of
a proposed design would permit the assessment of these as-
sumptions for that design. Perhaps in the future, measure-
ments can be made on operating space devices which will
permit a general characterization of the basic parameters in
such processes. Such measurements also will suggest the
proper probability distribution for disturbances of this type.
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